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An efficient method is proposed for calculating the mathematical expectations, 
the correlation matrix, and the variances of static stochastic temperature 
fields for complicated technical objects with random parameters and under 
random conditions. The technical systems are modelled by equivalent elec- 
trical circuits with random elements. The method is exact and much more ef- 
ficient than the Monte Carlo method. 

Introduction. The temperature fields of technical objects (radioelectronic and micro- 
electronic apparatus, heat exchangers, electric machines, etc.) under real operating condi- 
tions are stochastic. 

The temperature fields of technical objects are stochastic because the parameters and 
characteristics of the objects, such as the heat-emission intensities, the sizes of the struc- 
tural elements, the thermophysical characteristics of the materials, the gapwidths between 
structural components, the temperature of the surrounding medium or coolant, and the heat- 
transfer coefficients, are themselves random. The randomness of the parameters and the charac- 
teristics of technical objects is in turn a consequence of the technological statistical 
variations in the fabrication of the objects, the uncontrollability of random factors in the 
construction, and fluctuations of the external operating conditions. 

All existing methods of analysis of stochastic temperature fields in complicated technical 
objects (with the exception of the simples t cases, which can be studied analytically) are based on 
(with the exception of the simplest cases, which can be studied analytically) are based on 
the method of statistical tests (Monte Carlo method) [1-3]. The Monte Carlo method, being 
universal, has a number of fundamental drawbacks which preclude its use for many problems 
[4, 5]: the number of tests is large, so that in practice the method is useful only for 
solution accuracy higher than 15-20%; the error of the method is established only with some 
probability; the pseudorandom numbers generated by different devices in the computer are only 
approximately independent and uniformly distributed in the interval [0, i]. For these reasons 
methods different from the Monte Carlo method and not having its drawbacks must be developed 
for analyzing stochastic temperature fields. 

The present paper is devoted to such a method. Our method makes it possible to calcu- 
late the probabilistic characteristics (mathematical expectations, variances, and correlation 
matrix) of static stochastic temperatures at different points of a technical object. The 
method is exact and the probabilitic characteristics are obtained in analytical form. All 
parameters and characteristics determining the temperature field of the technical object are 
random and can conform to any truncated distribution functions. 

Thermal and Mathematical Models. The thermal model of the technical object is re- 
presented in the form of a thermal network of isothermal bodies (elements of the technical 
object), which exchange heat with one another and with the surrounding medium, and heat 
sources and sinks [6]. 

The mathematical model of the heat-transfer processes occurring inthe thermal model 
is a system of stochastic linear equations which corresponds to the assumption that the 
intensities of heat emission, the thermophysical characteristics of the materials, and the 
heat-transfer coefficients are independent of the temperature. 
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The equations of the stochastic mathematical, model are automatically constructed by 
the topological matrix method of nodal potentials for the graph of the thermal network and 
have the form (7] 

where ~= (/~ ..... f,)v is a column vector of stochastic temperatures at the nodes of the 
thermal network; n is the number of nodes in the network with the exception of the reference 
node, which corresponds to zero temperature: P= (Pl, ..., p,~)T is a column vector of sto- 
chastic heat-emission intensities; m is the number of generalized edges of the graph re- 
presenting the network; ~= ([el .... , [~,~)T is a column vector of stochastic temperatures of 
air and a coolant; A is an n • m rectangular topological incidence matrix; O= [Oii], 
f=1, 2, ..., nz is an m • m stochastic diagonal matrix of the thermal conductances of the 
generalized edges of the network graph; T denotes transposition; and, A denotes stochasti- 
city. The elements of the stochastic matrix G are independent of one another and of the 
vectors ~ and ~c" 

We represent each element Gii of the matrix G as a sum of its mathematical expectation 
^0 

~Gii and the centered random quantity Gii. Thenthe matrix G can be written in the form 

G = M G + ~0, where M G and ~o are the diagonal matrix of mathematical expectation and a cen- 
tered stochastic diagonal matrix, while the stochastic matrix AGA T in Eq. (i) assumes the 
form 

46A ~ =. u + ~ = u (~ + u-~%, (2) 

where U-AM(;A~and s=AO~ determinate and stochastic n x n square matrices, and E is 
a diagonal unit matrix. 

The solution of Eq. (i) with the transformed matrix AGA T (2) can be expressed in an 
explicit form, if the stochastic matrix E + U-IS is invertible. The matrix E + U-IS, how- 
ever, is invertible, if there e~ists a matrix norm tl'll such that iiU !~ii<l [8]. In this 
case the desired column vector t of stochastic temperatures will be determined by the fol- 
lowing expresssion: 

= - -  ( 3 ) 

where ~-.i=(f+U ~S) ~ is a stochastic inverse matrix. 

Vector of Mathematical Expectation. We now find the vector of mathematical expectation 

mt of the stochastic temperatures ~. For this we apply the mathematical expectation operator 
M(') to both sides of Eq. (3~. Since the random thermal conductances are independent of the 
stochastic vector of powers P and the stochastic vector of temperatures of the medium (cool- ^ 
ant) s we obtain 

,r~ = M i?  ~ ~ M ~-~> U-~A (~..-.-. Mc ~ , J  --. M !~-~U-~A~~ . (4) 

The difficulty in obtaining an analytic expression for the vector mt is to find the 
inverse stochastic matrix H -i and its mathematical expectation. This, however, can be 
done, since IIU !~N<I , which makes it possible to represent the inverse stochastic matrix 
H -i by a convergent power series [8]: 

/r = (E + u-~$)-~ = 2 ( -  1/, (u -~? .  
k - - O  

We now determine the expressions for M(H -i) and M(I~-IU-IAG~ appearing in Eq. (4). 
introduce the matrices B = U-iA and F = A~B , where U-@ = BG~ ~ �9 
tation (5) and summing the matrix series obtained, we have 

M (/~-~) = 2 ( -  1)~M (U-xS) n = --~%~ (-- 1)~M (BGOA') ~ = 
h = O  h'=:O 

. ~ h + i  

= E - - B  (--I)hF~M(6 ~ )A ~ E - B W i  A~ 
h = O  

(5) 

We 
Using the represen- 

(6) 
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if IIFdG~ < i, where W~ is adiagonal matrix with the elements 

W,.~ = M (4~/(1 --', Fd,~zO~ i = 1,2 . . . . .  m; (7 )  

F d i s  a d i a g o n a l  m a t r i x  whose  e l e m e n t s  Y d . i i ,  i = 1, 2,  . . . ,  m, a r e  t h e  d i a g o n a l  e l e m e n t s  
of the matrix F. We note that since the matrix Fd ~~ is diagonal, the condition IIFdGOll < 1 

F ^0 is equivalent to the condition max I d,i~G~il < I. 
i 

Analogously to Eq. (6) we obtain 

= ~ (--  1)~M ( ( U - s  o) = M (~I-1U-lA6O) 
~ = ~  (8) 

= ~ (-- I)~M ((BG~ ~ ---- B ~ (-- I)~F~M (G 0~+~) ---- BW~ 
h = O  A = I  

w i t h  t h e  c o n d i t i o n s  maXJFd, e~&~ 1. 

Substituting the expressions (7) and (8) into Eq. (4), we obtain finally an analytical 
expression for the vector of mathematical expectation of the stochastic temperatures 

nl t - -  B (E - -  W 1 F  ) (t~l, - - M 6  ~ic) - -  B W I ~ . t c .  (9)  

The elements W1,ii of the matrix Wl are, according to Eq. (7), the mathematical expectations 
^0 ^0 

of the expressions Gii/(l + F d iiGii ) and are calculated from the formula 
' ,, 

Gif 

~ F 0 w~,. = f~(od)o~/ 0 + d ~o,~)dG~ (lO) 

Oil 
where fi(Gii)is the distribution function of the centered random value of the i-th thermal 
conductance GO , i=l, 2 ..... m. The distribution function fi(Gii) can be arbitrary, but 

t! 
it is truncateld 1 into the interval [Gii , Gii]. 

Correlation Matrix. We now find the correlation matrix K t of the stochastic tempera- 

tures ~. Usually it is more convenient to determine the matrix of the second initial moments 
Ft, with which the matrix K t is related by the relation [Q=F;--r~t~ [4]. 

We write the transpose of the matrix (3) 

-7 7 = (?' - M G  %--  a~ < ~ ) - i  ( 11 ) 

where (HT)-I = (E ~- S~U-1)-I. 
. _ ~ ^  

Applying the mathematical expectation operator to the product tt ~, made up of the ex- 
pressions (3)and (ii), we obtain a matrix of second initial moments 

r, Md?5 /.<>Iu-~A<>--M~%--a~215 -~~ = = O to) "A~U -~ (}t~) -~) = 

= M (I~-~Bg~B ~ ([I')-~) -- M (fl-~BO~ ~ (~F)-~)-- M ([J-~B2~O~ ~ (h~) -~) § M (71-~Bb~176 (~f)-~) = 

= P l - - F ~ - - r a  + r~, (12) 

^ ^ 

where ZI-~ (>--M6tc)(P--fVlo~e) T, Z2= tc (P--Mo~e) T and Z~---- ~c~ are stochastic matrices; 
F I, F2, F~, and F 4 are the mathematical expectations of the corresponding stochastic matrices 
in the expression (12). If the stohastic matrix H -~ is represented by the series (5), then 
the matrices F~-F~ in Eq. (12) can be put into the following form: 

= M ( <- <aop>'< ;FaOt, W, 
~,i=o 

I'2 B.M ( 1 = ~ o ( -  )i+j (~op)r (r&);  B',  

r~ = B.M ( ~ ( -  ,)i+J (a0ey2~a0(Fd0)J) B ~, 
\ i,]=O 

(13) 

(14) 

(15) 
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F~= B.M ( ~ (--l)i+i (a~176176 ~. (16) 
~i,j=O 

Summing the  s e r i e s  ( 1 3 ) - ( 1 6 ) ,  s u b s t i t u t i n g  the  e x p r e s s i o n s  ob ta ined  f o r  Fz-F ~ i n t o  Eq. (12) ,  
we obtain the final analytic expression for the matrix of second initial moments of the 
stochastic temperatures 

Ft=B(M~ZO_(M(2OFV/~.i IV~FM(2~))§ (FdV/~M(iz)-E M (i])FdW~) + V/3D)B~ (17) 

under the condition max]Fd:,uG~ I < i, where W 2 is a diagonal matrix whose elements are 
i 

( 1 8 )  

W3 is a diagonal matrix whose elements are 

W3,~ = M (G,.~ / (1 + F  .0~ i = !,2, m; ( 1 9 )  

D is a diagonal matrix whose elements Dii have the form 

D~ = M (Zl,q~) Fiq f ~ -~ %~ M (22,i~) (F~7~ ~ Ft~) ~ M(Z~,ii), 
q,~=, k=, ( 2 0 )  

= 1,2 ..... m; 

M(Z1), 3J(Z2), M(Z3) a r e  the  mathemat ica l  e x p e c t a t i o n s  of  t he  s t o c h a s t i c  m a t r i c e s  Z~, Z2, Z3, 

i.e., the adjoint matrices Of the second initial moments; M(Zl.qh), M(Z2,in), M(Z3.~i) are the 

corresponding elements of the matrices M(Z~), M (Z2), M (i3). The elements Wz,ii and W~, ii of the 
diagonal matrices W 2 and W~ are calculated from formulas of the type (i0). 

The variances --Ot=(@1, 02 ..... @~)T of the stochastic temperatures of the technical object 
are equal to the diagonal elements of the correlation matrix Kt. 

Thus we have derived analytical expressions which permit calculating exactly the mathe- 
matical expectations (9), the correlation matrix (17), and the variances of the stochastic 
temperatures at different points of technical objects in the static regime. The expressions 

..^0 ]<1 This condition is not strict, since in real tech- obtained are valid, if ~ a x  ]Fd,11Gii . 
i 

nical objects the maximum spread of the random values of the thermal conductances is always 
less than their mathematical expectation. For the stochastic vectors ~ and ~ it is necessary 
to know only the probabilistic characteristics; there is no need to know the distribution 
functions. 

We now assess the efficiency of the proposed method as compared with the Monte Carlo 
method. For this we estimate the number of arithmetic operations which must be performed 
in order to determine the probabilistic charactersitics mt, Kt, and Ot Since approximately 
n 3 operations must be performed in order to compute the product of two n x n matrices, and 
2n2/3 operations must be performed in order to solve a system of n linear equations by Gauss' 
method, and 2n ~ operations must be performed in order to invert an n x n matrix [9], the 
proposed method requires approximately 2n 2 operations in order to determine the vector mt 
and 9n s operations in order to determine the matrix K t and the vector ~t At the same time, 
the Monte Carlo method requires approximately 2n2N operations in order to determine the 
vectors mt and ~t and the matrix Kt, where N is the number of tests. We note that the actual 
machine time required will be somewhat larger because other operations must also be performed 
(readdressing, logical operations, data transfers, etc.), and also in the Monte Carlo method 
nN random numbers with prescribed distributions must be generated. 

Example. We consider the stochastic temperature distribution in an electronic module 
containing a board containing four integrated circuits (IC) in a ceramic 16-output housing 
and two IC in a ceramic 40-output housing (see Fig. i). The conditions of cooling correspond 
to forced ventilation. Radiation and heat conduction through the thickness of the board are 
neglected; the ends of the board are assumed to be thermally insulated. The thermal network 
(see Fig. i) of the module contains 81 branches and 39 nodes (the numbers on the network are 
the branch numbers; the circled numbers are the numbers of the nodes corresponding to the 
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Fig. i. Thermal network of the electronic module: i) board; 2) 
integrated circuits placed on the board. 

TABLE i. Probabilistic Characteristics of 
Stochastic Temperatures of Crystals of IC 
Placed on the Board 

the Mathematical I Number of V~riance 
IC on the board expectation mt, @t, ~ 

I ~ , 

Interval of possible 
values of stochastic 
temperatuer t, ~ 
with confidence pro- 
bability 0.95 

83,03 
82,76 
81,46 
81,38 
98,66 
99,58 

14,88 
I4,82 
12,75 
31,41 
15,90 
21,69 

75,47--90,60 
75~22--90,30 
74,46--88,46 
70,39--92,36 
90,84--106,48 
90,45--108,71 

crystals of the IC). The stochastic quantities are: the powers of the IC PI-P6 (edges 31-36); 
the coefficient of heat transfer into the medium ~; the temperature of the medium tc; the 
thermal conductivities of the crystal IC-housing cover ol-oG and of the crystal IC-housing 
base o7-oz2, dissipation from the surface of the IC housing into the medium ols-o~s, the 

IC-housing base board o19-$24, and dissipation from the surface of board free of IC into 
the medium o37-o45. The thermal conductances of the outputs of the housing $=5-~30 and of 
the spreading of the heat flux over the board 046-069 are determinate quantities. The heat 
sources in the branches 70-81 are equal to zero and they model the adiabatic conditions on 
the ends of the board. The powers of the IC PI-P~ and the temperature of the medium t c 
satisfy the distribution laws with the ratios ~ = 6/m equal to epl + ep2 = ep3 = 23%, 

ep4 = 52.5%, Ep5 = 17%, Sp6 = 26% and etc = 48%, where 6 and m are the range of possible 
values and the mathematical expectation of the stoachastic equantity. The stochastic thermal 

^ ^ ^ A ^ 

conductances ol-ols and o37-o4s have a truncated normal distribution function while oz9-o24 
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have a uniform distribution function with the ratios E z = E, = EZ9 = E20 = e39 =44%, g5 = 36%, 
E 6 = 21%, s7 = Ezo = 53%, E l 1  : E l 2  = 61%, E13 = Ez6 = 46%, Ez7 = 13%, Ez8 = 42%, E23 = 

E24 = 22%, E37 = E38 = E4z = 28%, e40 = E44 : E45 = 45%, E21 = E22 = E42 = E43 = 31%. The 
norm IIFdG~ = 0.523 and corresponds to the thermal conductance oi~. 

The vectors of mathematical expectation mt and variance @t and the correlation matrix 
Kt of the stochastic temperatures at 39 nodes of the thermal network were calculated using 
the expressions of the method (9) and (17) on an IBM PC/AT-386 personal computer. The results 
are presented in Table 1 for the probabilistic charactersitics of the stochastic temperatures 
of the crystals of the integrated circuits (nodes 1-6 of the thermal network), which are most 
important for design purposes. The last column in Table 1 shows that the temperature of 95% 
of the crystals of the IC (in this example) will fall within the intervals given. 

For comparison we calculated the probabilistic characteristics by the Monte Carlo method. 
In order to obtain results which differ from the exact results (obtained by the proposed 
method) with a relative error of 5%, 500 tests and 1 h 41.6 min of machine time were required. 
The method proposed in the present paper required 1.4 min of machine time. 

Conlusions. The proposed method permits determining the mathematical expectation, the 
correlation matrix, and the variance of the stochastic temperaturedistribution in technical 
objects of arbitrary complexity, which are modelled by equivalent electric circuits. Applica- 
tions of the method to different technical objects showed that it is significantly more ef- 
ficient than the Monte Carlo method. 

NOTATION 

~, vector of stochastic temperatures; G, stochastic matrix of thermal conductances; 
A 

P, tc, vectors of stochastic powers and temperatures of the medium or coolant; A, incidence 
matrix; M('), mathematical expectation operator; Kt, correlation matrix; mt, Ot, vectors of 
mathematical expectations andvariances of stochastic temperatures; and, Ft, matrix of second 
initial moments. 
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